

Evolvable Space Systems

For Long-Life and Inherent Survivability

Adrian Stoica and Anil Thakoor

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91107

Biomorphic Explorers Workshop

August 19, 1998

Outline

- The need for a new paradigm
- Evolvability to increase survivability
- Goal: long life purposeful survivability
- Concept
- Inspiration and innovation
- How would this technology revolutionize NASA Missions
- Technical Challenges
- Technology Goals

The need for a new paradigm

AFTER AFTER

Add evolvability to increase survivability

Long life purposeful survivability

MENTAL DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DEL SERV

Purposeful Survivability (100+ years)

Change of focus

robust design from robust components

Chameleonic Space Systems

Self-healing

- evolutionary robust design from flexible resources
 - repair
 - reallocation
 - reutilization

- Fleet, Swarm, Armada
- Some do not adapt, their resources unharmed resources are reused by survivors

In-Situ Adaptation/Reconfiguration for the task

Task requires different body shape

In-situ reconfiguration of body shape to adapt to the task

Evolvable Space Systems

APPENDATE OF A PERSONAL PROPERTY OF A PROPERTY OF A PERSONAL PROPERT

 Apply evolutionary algorithms to adaptively selfreconfigure space systems for long-life purposeful

• Evolution of Space Systems would include autonomous changes/reconfiguration of both software and hardware including sensors, avionics, structure...

Inspiration and innovation

APPOARED AND APPOARED APPOARED APPOARED APPOARED APPOARED

Evolution in nature has lead to species highly adapted to their environment - adaptation ensured survival.

The most fitted individuals survive becoming parents; children inherit parents characteristics, with some variations, may perform better, increasing the level of adaptation

The same evolutionary principles can be applied to machines

Potential designs and implementations compete; the best ones are slightly modified to search for even more suitable solutions

Accelerated evolution, ~ seconds for electronics

Evolutionary Algorithms

APADADERA DE CONTROL D

Evolware

APPEARED APP

Evolution = Optimization

Artificial evolution is an optimization process. The optimization can be made for one or more characteristics simultaneously - e.g. function, cost, power, survivability, size

Optimization at design phase

- before mission -

Optimization during mission: (optimal) adaptation to new situations, changes in requirements

Example:

- Evolve very small components
- Evolve multi-functional/reconfigurable components
- Evolve robust/fault-tolerant/self-healing components
- Evolve optimal designs at system level

Example

- Evolve new functions, unforeseen at launch
- Evolve for in-situ adaptation
- Evolve to self-heal

"Genetically Engineered" Nanoelectronic Devices

APPENDED OF THE POST OF THE PO

Gerhard Klimeck(385), Adrian Stoica (344)

Objective:

 Automated device synthesis and analysis using genetic algorithms.

Justification:

- Empirical Design (usual process) is suboptimal. Complete design space search is unfeasible.
 - => Develop automated design tools.

Impact:

- Rapid nanotechnology device synthesis and development.
- · Generation of novel devices.

Approach:

- Augment recently developed advanced NanoElectronic MOdeling (NEMO) tool analyze individual structures in parallel.
- Augment parallel genetic algorithm package (PGApack) to optimize and select desired structures in NEMO.
- Develop graphical user interface to enable access to set of evolutionary quantum device design models.

12

Evolvable Electronic Circuits

Objective: Develop microelectronics chips capable of self-reconfiguration for adaptation to the environment

Payoff: Achieve high autonomy on-board spacecraft

- Maintain functionality under changes in operating conditions
- Provide new functions, not anticipated on ground

Approach:

- Use reconfigurable cells
- Achieve self-organization by reassigning cell function & connections between cells
- Use powerful parallel seraches (e.g. genetic algorithms) directly in hardware, to evolve chip architecture

- Long life, survivable, self-healing space systems
 - •would allow long duration/far out missions
 - •would harness required power and other resources from environment
- Would enable *evolvable missions* capturing science/exploration opportunities in real time
- Space explorer
 - •would produce knowledge from acquired data
 - •would use the knowledge to mission refocus/replanning
 - •would be able to create new functions, unforeseen before launch
 - •would be able to learn on-the-fly to best deal with changing conditions

Evolvable system technology: adaptive platform for space systems in a large variety of missions

Technical Challenges

· Efficient representations, architectures, algorithms

APANADEAN APEANADEAN APEAN APEAN

- Identify DNA-equivalent for a space system for it to become reconfigurable, evolvable, self-healing, capable of reconstructing after damage..
- How to empower the system to direct and execute the evolutionary process
- Revolutionary advances in materials, components, and structures for inherent evolvability
- Breakthrough in validation techniques
 - Define fitness functions for evolvability

Stoica

Technology Goals

APPEAR OF THE PROPERTY OF THE

10 years..

Evolvable Sensory Systems for Space Explorers

- Evolution of electronic circuits directly on-chip, performing a flight-relevant function (e.g. data compression)
- Intelligent adaptation of a science instrument
- Intelligent sequencing of instruments, adapt individual instruments
- Adaptive/Intelligent space sensory systems

15-20 years..

Evolvable Space Systems

- Adaptation of materials, structural/mechanical components, sub-assemblies
- Self-healing, automatic mission planning from high-level mission goals
- Long life, inherently survivable space systems

